International **IPR** Rectifier

HEXFET[®] POWER MOSFET

IRFN9140

N-CHANNEL

-100 Volt, 0.20Ω HEXFET

HEXFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry achieves very low on-state resistance combined with high transconductance.

HEXFET transistors also feature all of the well-establish advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, and high energy pulse circuits.

The Surface Mount Device (SMD-1) package represents another step in the continual evolution of surface mount technology. The SMD-1 will give designers the extra flexibility they need to increase circuit board density. International Rectifier has engineered the SMD-1 package to meet the specific needs of the power market by increasing the size of the termination pads, thereby enhancing thermal and electrical performance.

Product Summary

Pa	rt Number	BVDSS	RDS(on)	b
I	RFN9140	-100V	0.20Ω	-18A

Features:

- Avalanche Energy Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Surface Mount
- Light-weight

	Parameter	IRFN9140	Units
ID @ VGS = -10V, TC = 25°C	Continuous Drain Current	-18	
ID @ VGS = -10V, TC = 100°C	Continuous Drain Current	-11	Α
IDM	Pulsed Drain Current 10	-72	
P _D @ T _C = 25°C	Max. Power Dissipation	125	W
	Linear Derating Factor	1.0	W/K 5
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy 2	500	mJ
IAR	Avalanche Current 10	-18	A
EAR	Repetitive Avalanche Energy 1	12.5	mJ
dv/dt	Peak Diode Recovery dv/dt 3	-5.0	V/ns
Тј	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Package Mounting Surface Temperature	300 (for 5 seconds)	
	Weight	2.6 (typical)	g

Absolute Maximum Ratings

	_					
	Parameter	Min.	Тур.	Max.	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	-100	—		V	$V_{GS} = 0V, I_{D} = -1.0mA$
ΔBV _{DSS} /ΔTJ	Temperature Coefficient of Breakdown Voltage	—	-0.087		V/°C	Reference to 25°C, ID = -1.0mA
RDS(on)	Static Drain-to-Source	—	—	0.20		VGS = -10V, ID = -11A
	On-State Resistance	—	—	0.22	Ω	VGS = -10V, ID = -18A
VGS(th)	Gate Threshold Voltage	-2.0	_	-4.0	V	$V_{DS} = V_{GS}$, $I_{D} = -250 \mu A$
gfs	Forward Transconductance	6.2	_		S (び)	VDS > -15V, IDS = -11A ④
IDSS	Zero Gate Voltage Drain Current	—	—	-25		VDS = 0.8 x Max Rating, VGS = 0V
		—	—	-250	μΑ	VDS = 0.8 x Max Rating
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	—	—	-100	nA	VGS = -20V
IGSS	Gate-to-Source Leakage Reverse	—	—	100		VGS = 20V
Qg	Total Gate Charge	31	—	60		VGS = -10V, ID = -18A
Qgs	Gate-to-Source Charge	3.7	—	13	nC	VDS = Max. Rating x 0.5
Qgd	Gate-to-Drain ("Miller") Charge	7.0	_	35.2		see figures 6 and 13
td(on)	Turn-On Delay Time	—	_	35		VDD = -50V, ID = -18A,
tr	Rise Time	—	—	85	ns	$R_G = 9.1\Omega$, $VGS = -10V$
td(off)	Turn-Off Delay Time	—	_	85	115	
tf	FallTime	—	—	65		see figure 10
LD	Internal Drain Inductance	—	2.0	_	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die.
LS	Internal Source Inductance	_	4.1			Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.
C _{iss}	Input Capacitance		1400			$V_{GS} = 0V, V_{DS} = -25V$
C _{OSS}	Output Capacitance	—	600	—	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance	_	200	_		see figure 5

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Test Conditions
١s	Continuous Source Current (Body D	Diode)	_	_	-18	A	Modified MOSFET symbol showing the
ISM	Pulse Source Current (Body Diode)	1	—	—	-72		integral reverse p-n junction rectifier.
VSD	Diode Forward Voltage		—	—	-4.2	V	Tj = 25°C, IS = -18A, VGS = 0V ④
t _{rr}	Reverse Recovery Time		—	—	280	ns	Tj = 25°C, IF = -18A, di/dt ≤ -100A/μs
QRR	Reverse Recovery Charge		—	—	3.6	μC	V _{DD} ≤ -50V ④
ton	Forward Turn-On Time Intrin	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_{S} + L_{D}$.					

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
RthJC	Junction-to-Case	—	—	1.0		
R _{th} J-PCB	Junction-to-PC Board	_	TBD	_	K/W	Soldered to a copper clad PC board

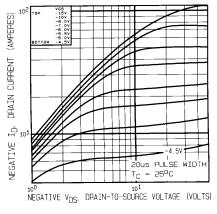


Fig. 1 — Typical Output Characteristics $T_C = 25^{\circ}C$

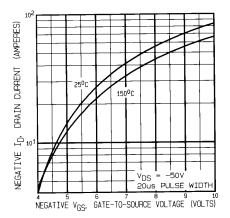


Fig. 3 — Typical Transfer Characteristics

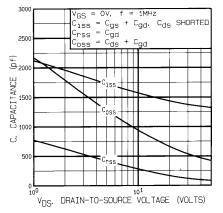


Fig. 5 — Typical Capacitance Vs. Drain-to-Source Voltage

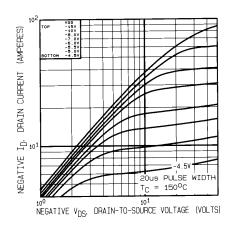


Fig. 2 — Typical Output Characteristics $T_C = 150^{\circ}C$

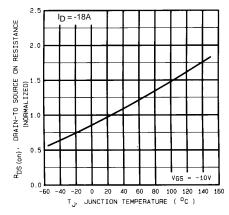


Fig. 4 — Normalized On-Resistance Vs.Temperature

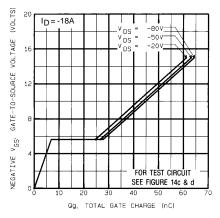
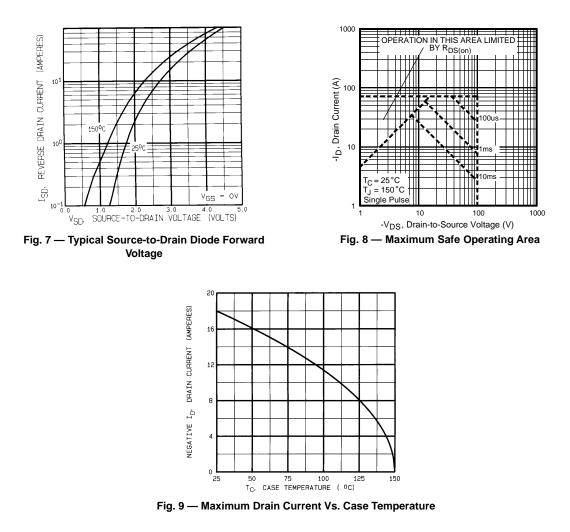



Fig. 6 — Typical Gate Charge Vs. Gate-to-Source Voltage

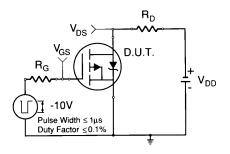
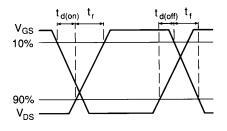



Fig. 10a — Switching Time Test Circuit

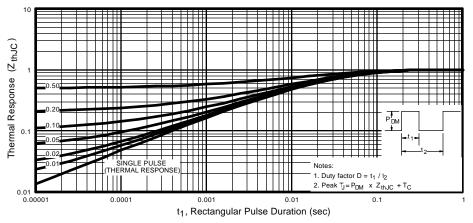


Fig. 11 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

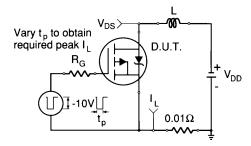


Fig. 12a — Unclamped Inductive Test Circuit

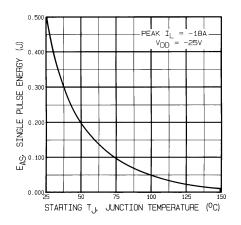


Fig. 12c — Max. Avalanche Energy vs. Current

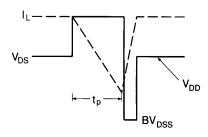
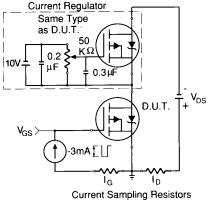



Fig. 12b — Unclamped Inductive Waveforms

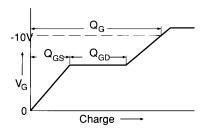
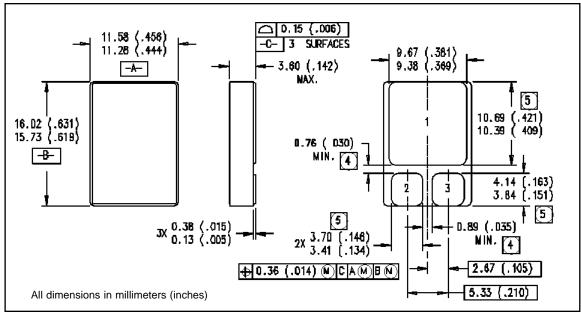



Fig. 13b — Basic Gate Charge Waveform

- Repetitive Rating; Pulse width limited by maximum junction temperature. (see figure 11)

- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%
- 5 K/W = °C/W W/K = W/°C

Case Outline and Dimensions — SMD-1

International **ICR** Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/